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SUMMARY 

CONTROL CONCEPTS FOR STORM WATER TREATMENT AREAS 

 

This report summarizes the system identification method proposed to identify a realistic model 

for the water level control of the flow through storm water treatment areas. In section I an 

introduction to the basic tenets of system identification is given followed by a system model 

identified with available data outlined in section II along with a controller design in section III. 

The success of the system ID process will depend on the ability to collect water level data or 

phosphorus data over a frequency range. This can be accomplished by changing the input 

variables in a square wave pattern and observing the levels at chosen locations as a function of 

time. Since such data is not available currently the presented work simply provides some insight 

into what can be achieved by carrying out a well-planned experiment for the purpose of system 

ID. The trends shown are representative of what can be expected. These ideas will be illustrated 

at the workshop to explain how the control system can be designed and implemented first on an 

experimental facility and then as a pilot test. 

 

I. INTRODUCTION TO SYSTEM IDENTIFICATION 

System identification is a process by which a predictive mathematical description for a 

physical system is obtained from real physical data. In its simplest form, input-output data are 

related by a set of differential equations relating each input variable to an output variable.  There 

are some guidelines that must be followed in selecting the input excitations so that the system ID 

leads to a realistic model.  By doing some simple experiments the necessary input functions can 

be selected based on any available analytical models, expert opinions on the subject and 

available bandwidth information. 

The system identification is important for the design and implementation of a control system. 

The confidence level of the validity of a system model dictates the controller design process. The 

fidelity of the model realized will inform the controller designer what methodology to use. An 

identification process could lead to a state space model or transfer matrix model, possibly 

nonlinear. For purposes of control design one uses the simplest possible dynamic model that is 

able to capture the general input-output behavior. Every system identification process consists of 

the following stages: 

 Experimenting and data collection 

 Signal conditioning and data processing 

 Model structure selection 

 Parameter estimation 

 Model validation. 
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Experiment and data collection is an important step of an identification process without which 

a model cannot be built. Based on prior knowledge of the system and its expected or desired 

performance the input excitations must be chosen. There are two very important considerations:  

In its simplest way, the system model may be treated as linear time invariant. To identify the 

parameters of a linear system we need to first determine its model order and the relative degree. 

This is usually done by iterating over the order of the dynamic system.  The primary requirement 

is that the input should satisfy the persistent excitation condition. That means that the input 

should be chosen to excite all the relevant dynamics of the system. In other words, the frequency 

content of the input signal should be rich enough to be able to identify all the necessary 

parameters of the linear system.  

However, a linear system is an idealization of the real world. All real systems need one or more 

nonlinear elements for their model development. The identification process for that is to assume 

a parametric form of the nonlinear elements in a system and estimate the parameters, and then 

use a nonlinear set of differential equations to describe the system. While it is useful to be able to 

obtain such nonlinear models in control design in most cases one can work profitably with linear 

models and compensate for any uncertainty with robustness measures. The key idea is to obtain a 

cluster of linear models to represent the overall nonlinear behavior of the system. This is 

accomplished by linearizing the nonlinear system about an operating point. The error between 

linear estimated system and the actual nonlinear one would naturally increase as one moves away 

from the operating point and the system so identified. By identifying several linear systems the 

deviations from the actual nonlinear system can be kept to a minimum. The goal should be to 

obtain a minimum number of such linear models.  

 

 

 

 Figure 1: Real system schematic  

In a real experiment, the output measured is influenced by sensor noise and input disturbances. 

Generated input stimuli can also be noisy. The collected data can be filtered using signal 

processing techniques before feeding them into the system identification module.  The model 

structure of the physical system is dictated by the data we get from the system, and will influence 

the control strategy to be used. A typical model of the system takes the form of a Transfer 

Function, or a differential/difference equation relating an input-output pair. Additional 

measurements of signals and/or parameters in the interior of the system can be used to further 

refine a basic input-output model.   
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 Figure 2: System Identification  

Once a preliminary model and input-output data sets are chosen the specific parameters for the 

model order chosen can be estimated. The objective is to estimate the parameters so that the 

output error between the model output and experimental data is minimized. This could be done 

off-line with available input and output data with the model updated with new data when they 

become available.  This process is repeated until the error achieved is less than a certain 

threshold. This can also be done on-line where at every sample time the error is back propagated 

through the model to modify the model parameters.  

After parameter estimation, the model should be validated using a validation data set. It is done 

to avoid over training – or over estimating of the parameters of the system. Once the model is 

estimated using available data sets it validation should be done using a new set of data that was 

not previously used in the model identification. [1]Error! Reference source not found. 

 

II. STORM WATER TREATMENT AREA 

This project deals with model development for flow of water in Storm water Treatment Areas 

(STAs) in the Florida Everglades. STAs are huge wetland areas that have been constructed to 

reduce the level of chemicals such as phosphates in the water discharged into surface water in 

Florida. As water flows though the wetland, it is expected that the larger particles of chemical 

substances will deposit while the smaller particles are absorbed by plantation in the wetland. 

Both these phenomena are time dependent, and to achieve a desired level of chemicals in the 

water it has been postulated that it is necessary to control the water level in the wetland, and the 

resident time of the water flow.     
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 Figure 3: Canals and structures used to route water into the wetland STA-3/4 Cell 3A  

The water level inside the wetland is controlled through inflow canals upstream, and outflow 

gates downstream of the wetland. The objective is to control the water level and also the water 

flow rates so that water has sufficient resident time in the wetland to be treated. STA-3/4 Cell 3 

was selected as a pilot area to perform extensive observation.  

In Cell 3, water gauges are situated to measure the water level at different points of the 

wetland. Since we do not have any information about what is happening in other parts of the 

system other than at the discrete points at which gauges were located, approaching from a partial 

differential equation model is not very practical although the availability of such a 

comprehensive model would certainly reduce the cost of having to run extensive experiments to 

collect data.  Instead, we model the behavior of the measured parameters, (the water levels at the 

gauge  locations), in response to the water flows at the  inlet and outlet  of the wetland. 

 

 

 

 Figure 4: Contour plot of ground elevations in STA-3/4 Cell 3A, and gauge locations. 

Ten water level sensors were deployed (n1 through n10). 
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In particular, the water level measured with each gauge is modeled as a system of 

interconnected tanks. As the slope of the wetland is generally from north to south, water enters 

from the inflow canal into the wetland and flows down to the end. Taking this into account the 

gauges are clustered into three separate systems grouped as {           }, {           }, and 

{            }.  
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 Figure 5: Four related tank model used to model the dynamics of the water level 

measured by the gauges in the wetland. 
 

For a four-tank interconnected system, the following simple equations govern the water flow: 
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(1) 

𝑄  and 𝑄  are the total water inflow and outflow of the wetland, 𝑞 ’s designate the water flow 

between regions, and   s are the coefficients indicating flow resistance at various points of the 

wetland, and    is the area of each region. The variation of the water level in each tank is a 

function of the difference in water level of the neighboring tanks at that instant. And the height in 

each tank is dependent on the resistance to flow from the vegetation. For example, one of the 

assumptions in deriving the above model is that the volume of the water in the system, 

considering the input and output water to it, is always conserved.  

A model similar to the above analytical model can also be obtained using system identification 

using experimental data with the added advantage that some neglected dynamics may show up in 

the identified model. That would in turn help the development of a refined analytical model. To 

ascertain the validity of models an extensive identification experiment has been done on wetland 

STA -3/4 Cell 3A. The experiments included a sinusoidal discharge of water into the wetland 

from different levels characterizing the operating points. Error! Reference source not found. 

shows the water levels in the wetland that are registered with a set of gauges {           }. The 

slope in the wetland is such that there is a casual relationship between the water level in these 

gauges. The sinusoidal discharge wave appears in the data logged by the gauges with some 

delay. This experiment was done by perturbing the water levels – system states – around the 
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operating point of 3.1-3.5ft. Two other experiments have been done to model the behavior of the 

system in the range 2.8-3.2 ft, and 2.2-2.6 ft ranges of the water level inside the wetland. This 

allows the possibility of identifying a linear system that can be used to design a controller valid 

for each interval of operating conditions.  

For the identification process to converge we need to eliminate the sudden small discontinuities 

in the data logged, and obtain a smooth data set. To do so, a first order digital low pass filter 

given below is designed to eliminate noise and jumps in water level:  

 
 ( )  

    

  (      )
 

(2) 

The filtered data are then used to identify the dynamics of the system; however, real data are 

used in simulations to compare the performance of the real system with the identified model.  

 

  

 
 

Figure 6: Total Discharge, and Water Level at the Gauges {           }. 

A linear model was chosen with the water level in each gauge as output to describe the internal 

states of the system. It means that for a degree-four system we considered the output 

measurement matrix   to be the identity matrix. It is possible to restrict the identification process 

to set degree, but in this case the result may not be satisfactory especially due to the absence of a 

good predictive analytical model. Consequently, in the proposed method the identification is 

carried out for a general state space model, and the system is transferred to the desired structure 
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using a similarity transform. The data sets available can be used to estimate a linear system for 

the wetland around each of the operating points at    ,  , and     feet of water level in the 

wetland. 

In the remainder of the report we study the behavior of the water level in gages {           } 

for the first test wave, about the operating point 3.3ft. The goal is to identify a dynamic system 

that relates the water level in these gauges to the input flow. With the model structure and water 

level in each gauge in hand we can construct a state space model for the wetland. The 

mathematical background needed to understand the identification procedure can be obtained 

from references to the subject, such as [1], Error! Reference source not found., and Error! 

Reference source not found.. The derived state space model for the system of gages 

{           } around the operating point is,   

  [   ]    [ ]    [ ] 

  [

     
      
     
      

     
     
      
     

     
     
      
      

     
      
     
     

]    [

        
        
         
        

] 

 : vector of the water levels measured  

 : Inflow water 

 =900s: Sampling Time  

(3) 

The state space equations of the identified system tell us about the dynamics of the system. In 

particular one could assess the coupling between various sub systems and the controllability 

from the chosen input variable. 

Figure 7 shows the measured data and the estimated water level in each gauge using the 

identified model. As seen the identified dynamic system has promising performance that could 

be conveniently used in controller design. The same identification process can be used to get 

dynamic system models that relate the gauges (states) at different operating points.  
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Figure 7: Estimated and Measured Water Level in Gauges {           }. 

III.   WATER LEVEL CONTROL INSIDE THE WETLAND AREA 

Once a model of the system behavior of the water level in wetland is identified from the 

experimental data sets, this model is used to design a controller. The control objective in this 

case was chosen as: 

- Water level regulation, and 

- Disturbance rejection 

The output variables to be controlled are the water levels inside the wetland area, measured 

with two middle gauges (    and   ). The data set consists of one control input to the system, 

which is the total inflow to the wetland. With a single input, only the water level in one of the 

gauges is controllable. To deal with a more realistic scenario an auxiliary input is added to the 

system. This second input is taken as the outflow from the wetland at downstream. Now, they 

may be used to control the water level in two middle gauges which are the best measures of the 

water level inside the wetland area. Figure 8 is a schematic of the control structure.  

 

 

 

 Figure 8: Control Structure   

The variation of the water level measured by    is assumed proportional to the downstream 

water discharge. It is important to mention here that the obtained model is based on the water 

flows inside/outside of the wetland. To have an applicable design the actuators model, the model 
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of the water discharge equipment including the gates and the pump, also should be included in 

control loop, and considered in design stage. 

  [   ]    [ ]    [ ] 

 [ ]    [ ] 
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 =900s: Sampling Time 

(4) 

 

 Figure 9: Closed Loop Control Structure   

For simplicity, the dynamic of the actuators are neglected in this study.  

The design objective is to regulate the water level in spite of any precipitations. The water level 

in the wetland should remain in a certain ranges due to several reasons: The water needs to flow 

in the wetland so that the undesirable chemicals deposit and are separated; the necessary 

vegetation in the wetland to absorb and alter the undesirable particles and substances can get 

damaged in a flooded wetland; and the wetland is a natural habitat of several protected species, 

and needs to be preserved.  

Following is the Controllability Gramians of the system:     
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(5) 

Controllability Gramians of the system make it clear that although there is a large interaction 

between the states of the system, the input set is able influence the desired outputs. Since the 

controllability is assured with the Gramians being non-singular we could close the loops around 

the system separately, and do a fine tuning later. To do so, a PID-type controller is used to design 

each control loop. First, a PID controller is designed for the loop of first input-output to stabilize 

the system and reject the disturbance. Then the second controller is designed, considering the 

first one in the loop. Then a fine tuning is done to achieve the final required performance.  
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IV. SIMULATION SCENARIO 

The control objective is to regulate the water level in the wetland despite precipitation. The 

desired performance (design) specifications can be chosen as minimum overshoot and rise time, 

along with reasonable amount of control efforts – inflow and outflow water discharge rate.  

The unique control constraint in this problem is that the second control signal can only be 

positive. It means that it has just out-flowed from the downstream gate. Then in the controller 

design the second input signal could just be positive. Also, there are bounds on the input and 

output signals, which although is not exceeded in this design, must be considered in future work. 

     For the simulation scenario, the initial level of water is assumed 3ft in each gauge. The 

control objective is to set the water level at the gauges     and    at 2.8ft and 3.2ft, respectively. 

Also there would be 24 hours of precipitation at the rate of 1e-7 (     )    .  

 

  

 

  

 Figure 10: Water level read in each gauge during the simulation   

Figure 10 is the water level changes at each gauge. As it is clear, the designed controller shows 

acceptable performance. 

 

  

 

 Figure 11: The water flow in and out of the wetland during the simulation   

Also, to have an implementable control design, it is important that our control signals, here the 

in/out flow water discharges, be in a certain ranges. Compared to the experimental data of 

Error! Reference source not found., Figure 11 shows promising results. 
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Appendix A 

Software Package 
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Appendix B 

St. Venant equations developed for analyzing depth averaged, shallow, and one-dimensional 

canal flow, can be adopted to use in a wetland. These equations consist of two equations of 

continuity and momentum.  

  ℎ

  
 
 𝑞

  
   

 𝑞

  
 
 

  
(
𝑞 

ℎ
)   ℎ (      

 ℎ

  
)    

where 

𝑞: discharge per unit width, 

ℎ: water depth, 

𝑞   ℎ, 

 : average flow velocity, 

      : gravitational acceleration, 

  : friction slope, 

  : River bed slope. 

(6) 

However, formulation for water flow in a canal with vegetation resistance is more complicated, 

and generally couldn’t be done with the simple equations of St. Venant. This difficulty is rooted 

in several facts, such as,  

 Vegetation resistance depends on the bottom topography which might not be flat or 

even stationary due to organic accretion, sedimentation and erosion. 

 Vegetation resistance depends on vegetation density and type that varies spatially, and 

are not quantifiable easily. 

 Flow may be locally two dimensional in certain areas. 

Many models have been proposed to suit various flow conditions. Manning’s equation is the 

most common model to describe flow resistance in depth averaged canals. Following simple 

power function law is a variant of the Manning’s equations used by [4] for a variety of wetland 

types. 

 
𝑞(ℎ   )  

 

  
ℎ   |  |

 
   (  ) (7) 

 The three parameters,   ,  , and   determine three basic behaviors of the flow within a 

wetland. When     ⁄  and     ⁄ ,    is the Manning roughness coefficient and the equation 

becomes the Manning’s standard equation applicable for free surface depth averaged flow. There 

is no guarantee that the vegetation roughness always follows the above equation; however, this 

equation is simple based on power functions whose exponents provide valuable physical 

meanings. 



14 

 

The Manning formula is an empirical formula for estimating open channel flow or free-surface 

flow driven by gravity, and the vegetation roughness is an important physical parameter to model 

the Storm Water Treatment Areas (STAs) and Flow Equalization Basins (FEBs). Manning’s 

roughness values have been used for STA designs at SFWMD in the past. These values 

calculated using data in DBHYDRO for upstream and downstream could be considered as bulk 

resistance parameters, and are useful for a limited number of applications. Management of STAs 

for optimizing phosphorous removal requires more detailed estimation of the vegetation 

resistance values. 

Using the St. Venant equations, a simplified linear equation could be found governing the 

water level in a one dimensional canal: 

  ℎ

  
  (ℎ   )

 ℎ

  
  (ℎ   )

  ℎ

   
  (8) 

where   is defined as the kinematic celerity or propagation speed and   is hydraulic diffusivity 

or attenuation rate. These are two characteristics of a linear hyperbolic-parabolic partial 

differential equation governing convective-diffusive phenomena. Comparing equation (8) to the 

St. Venant equation, these parameters could be defined as follows: 

 
 (ℎ   )  

 𝑞

 ℎ
  (ℎ   )  

 𝑞

   
  (9) 

When the depth is shallow and the slope is large the term with   dominates, and the equation 

becomes predominantly hyperbolic. On the other hand, when the canal is deep and the slope is 

small the term with   dominates, and the equation becomes predominantly parabolic. These 

parameters also could be related to the Manning parameters and roughness coefficient as 

following:  

 
 (ℎ   )  

 𝑞

 ℎ
 (   )

 

  
ℎ |  |

 
   (  )  (   )

𝑞

ℎ
 

 (ℎ   )  
 𝑞

   
 
 𝑞

   
 
 

  
ℎ   |  |

   
  
𝑞

  
 

(10) 

The advantage of the power function form of the vegetation roughness equation is to relate the 

three basic properties of wave speed, attenuation and discharge to three parameters of  ,  , and 

𝑞 in the linearized hyperbolic-parabolic equation. To identify these parameters a sinusoidal 

solution is applied on the governing equation (8) using the complex form ℎ           where   

and   are both complex numbers. Choosing    𝑖 ,    would be the frequency of the discharged 

wave introduced at the upstream; then,        𝑖 determines the spatial decay constant and 

wave length. The real part of the solution gives the physical solution for the system: 

 ℎ             (       ) (11) 

The values of the  , and   are to be calculated using 
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 (ℎ   )  

 𝑞

 ℎ
 
  
  

(  
    

 )

(  
    

 )
 

 (ℎ   )  
 𝑞

   
 
  
  

  
(  
    

 )
 

(12) 

In a fully diffusive system,      , and        . In a fully hyperbolic system      , 

      , and     
  

 
, where   is the wave speed. In all cases       , unless the system has a 

source term. This equation shows that both   and   can be derived from the wave speed and 

attenuation. 

Although the partial differential equation (8) gives us a very good sense about the governing 

regime of the wetland, it is difficult to use it as a model to control the system. Using these 

equations needs to have complete picture of the interactions inside the wetland. When the 

wetland vegetation is very thick at the root, or when there is a muck layer with dead plants at the 

bottom of canal, there can be multiple flow regimes at different depths of a wetland. Also, 

uneven ground elevation can create a flow cutoff depth below which the discharge is too small to 

measure. All these makes the differential equation related to the position parameter   useless in 

control purpose. However, all these analysis gives us a broad vision about the phenomena taking 

place in a wetland. 

To identify the bulk parameters of the wetland, water is pumped at the upstream end to create 

waves. The upstream end has a spreader canal which is used to distribute the water evenly across 

the wetland. The storage effect of the canal at the upstream end of the wetland causes attenuation 

in the amplitude and a lag in the water level wave.  

The equation written for steady flow in a wetland of width   connected to a canal of the same 

length is as follow: 

 
  
   
  
 𝑄  [

 

  
 ℎ 
   
(
 ℎ 
  
)
 

]
   

 

  : Plan area of the canal; 

 : Width of the wetland equal to the length of the canal; 

  : Steady state water level in the canal; 

ℎ : Water level in wetland; 

𝑄 : Uniform rate of discharge into the canal; 

(13) 

If the steady discharge of 𝑄  is disturbed by a sinusoidal rate of 𝑞    (   ), the disturbed 

equation will be 
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 (   ℎ )

  
 𝑄  𝑞    (   )  [

 

  
 (ℎ  ℎ́)

   
(
 (ℎ  ℎ́)

  
)

 

]

   

 (14) 

Doing the calculations, the time lag between the waves cross the canal and penetrate to the 

wetland and the discharge rate is obtained as 

 
       (

        
     

) (15) 

   is the width of the canal,   is the frequency of the discharged waves,    is the spatial decay 

constant, and    is the wave length. The time lag is proportional to the disturbing frequency and 

the canal width. For kinematic flow when     (    ), the phase lag will be zero, and for a 

fully diffusive flow where     the phase lag is    degrees. 
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